World Business StrategiesServing the Global Financial Community since 2000

Conference Day Two

08.30 - 09.00
Morning Welcome Coffee
09.00 - 10.00
Keynote Speech "AI-driven ESG / SDG Strategies for Investment and Risk Management " 

The key discussion points will include:

  • Using AI to quantify unstructured data on ESG/SDG factors and associated non-financial risks
  • The use of Natural Language Processing and ESG/SDG taxonomies to quantify textual data in multiple languages
  • Ranking and benchmarking stocks based on ESG/SDG factors to implement Thematic, Long-Short and ESG/SDG-Tilted investment strategies
  • The relevance of SDG and non-financial risk factors for Alpha Research, Fiduciary Duty, Materiality Assessments, Country Risk and Risk Management

Richard V. Rothenberg:

Global AI Corporation & Research Affiliate, Lawrence Berkeley National Laboratory

Richard V. Rothenberg: Executive Director, Global AI Corporation, New York, NY and Research Affiliate, Lawrence Berkeley National Laboratory, Berkeley, CA

10.00 - 10.45
How Data Science is Impacting Multi-Asset Investing
  • How Data Science is Impacting Multi-Asset Risk Measurement
  • How Data Science is Impacting Multi-Asset Trading Strategies
  • How Data Science is Impacting Multi-Asset Model Portfolio Programs

Joseph Simonian:

Director of Quantitative Research, Natixis Investment Managers

Joseph Simonian: Director of Quantitative Research, Portfolio Research & Consulting Group, Natixis Investment Managers

Joseph Simonian is the Director of Quantitative Research in the Portfolio Research and Consulting Group at Natixis
Investment Managers. In this role, he leads quantitative research and portfolio strategy for the team’s model portfolio program, as well as customized solutions for the firm’s institutional and advisory clients. Dr. Simonian also leads thought leadership efforts for the team.
Dr. Simonian has over 12 years of investment industry experience and has served previously at Lehman Brothers,
PIMCO, JP Morgan, and Fidelity’s Global Institutional Solutions group. He has been widely published in leading industry journals and is the co-editor of the Journal of Financial Data Science.

10.45 - 11.15
Morning Break and Networking Opportunities
11.15 - 12.00
Trading Strategies Using a Mixture of Supervised and Reinforcement Learning

Abstract: Machine learning is rapidly transforming the field of quantitative finance. In this talk, we discuss how two distinct subfields of machine learning, namely reinforcement learning and supervised learning, can be combined into a single model that harvests the power of reinforcement learning in handling multi-period problems with delayed rewards and costs, and simultaneously harvests the power of supervised-learning to learn the structure of a non-linear model with interactions. Our technique fuses the two within the framework of generalized policy iteration by generating training sets which are then used by the supervised learner to learn a better representation of the action-value function, which is then used to generate a better training set for the next iteration. We show that our method outperforms tabular Q-learning in a simulation involving trading a very illiquid asset, and can handle discrete as well as  continuous predictors.

Gordon Ritter:

Senior Portfolio Manager, GSA Capital

Gordon Ritter: Senior Portfolio Manager, GSA Capital

Gordon Ritter completed his PhD in mathematical physics at Harvard University in 2007, where his published work ranged across the fields of quantum computation, quantum field theory, differential geometry and abstract algebra.

Prior to Harvard he earned his Bachelor’s degree with honours in Mathematics from the University of Chicago. Gordon is currently a senior portfolio manager at GSA Capital, and leader of a team trading a range of high-Sharpe absolute return strategies across geographies and asset classes. GSA Capital has won the Equity Market Neutral & Quantitative Strategies category at the Eurohedge awards four times, with numerous other awards including in the long-term performance category.

Prior to joining GSA, Gordon was a Vice President of Highbridge Capital and a core member of the firm’s statistical arbitrage group, which although less than 20 people, was one of the most successful quantitative trading groups in history, responsible for billions in pro_t and trillions of dollars of trades across equities, futures and options.

Concurrently with his positions in industry, Gordon teaches courses ranging from portfolio management to econometrics, continuous-time finance, and market microstructure in the Department of Statistics at Rutgers University, and also in the MFE programs at Baruch College (CUNY) and New York University (both ranked in the top 5 MFE programs).

He has published several articles on modern portfolio theory in top practitioner journals including Risk, and academic journals including European Journal of Operational Research.

12.00 - 12.45
Delivering Alpha: Artificial Intelligence in Capital Markers Investing
  • Why artificial intelligence for capital markets investing?
    • Challenge 1: Data acquisition, integration, processing power
    • Challenge 2: Artificial intelligence and its subcomponents
  • Where should financial services professionals focus their effort?

Michael Beal:

CEO, Data Capital Management

Michael Beal: CEO, Data Capital Management

Michael M. Beal is Chief Executive Officer of Data Capital Management. Previously he was Co-Founder and Head of Strategy & Finance at JPMorgan Intelligent Solutions, Deal Associate at TPG Capital and M&A Investment Banking Analyst at Morgan Stanley. Mr. Beal earned a B.A from Harvard College with honors in Economics and an M.B.A from Harvard Business School with distinction.

12.45 - 13.45
Lunch
13.45 - 14.30
Applying Machine Learning to Evaluate Systemic Risk and Contribution of Individual SIFIs

Applying Machine Learning to Evaluate Systemic Risk and Contribution of Individual SIFIs

Ksenia Shnyra:

Senior Advisor, Deloitte

Ksenia Shnyra: Senior Advisor, Deloitte  

14.30 - 15.15
“Risks and Regulatory Framework around using AI Models”

Introduction

  • The case for AI
  • Why now?
  • Current applications

Risks

  • Increasing Risks
  • How can Risks materialize?
    • Risks from Bias
    • Systemic Risk
    • Risks from deployment

Regulations

  • Current state of laws/regulations around AI
  • Regulatory expectations and evolving landscape
  • Recent Treasury report

Possible Solutions/Conclusions

Amit Srivastav:

Executive Director, Quantitative Analytics Group (Model Risk), Morgan Stanley

Amit Srivastav: Executive Director, Quantitative Analytics Group (Model Risk), Morgan Stanley

15.15 - 15.30
Afternoon Break
15.30 - 16.15
Factor Investing Using Volatility Data & Machine Learning
  • Equity factors
  • Volatility surface
  • Style investing

ShengQuan Zhou:

Quantitative Researcher, Bloomberg LP

ShengQuan Zhou: Quantitative Researcher, Bloomberg LP

  • Discount Structure
  • Early bird discount
    10% until November 2nd 2018

  • Special Offer
    When two colleagues attend the 3rd goes free!

  • Conference + Workshop
    $250 Discount

  • 70% Academic Discount
    (FULL-TIME Students Only)

Event Email Reminder

Error