SPEAKERS

Bruno Dupire: Head of Quantitative Research, Bloomberg L.P.
Jesper Andreasen (Kwant Daddy): Global Head Of Quantitative Research, Saxo Bank
Vladimir Piterbarg: MD, Head of Quantitative Analytics and Quantitative Development, NatWest Markets
Tony Guida: Executive Director – Senior Quant Research, RAM Active Investments
Rita Laura D'Ecclesia: Professor, Università degli Studi di Roma “La Sapienza”
Blanka Horvath: Honorary Lecturer, Department of Mathematics, Imperial College London
Helyette Geman, PhD, PhD: Professor of Mathematical Finance, Birkbeck – University of London & Johns Hopkins
Fabio Mercurio: Head of Quant Analytics, Bloomberg L.P.
Peter Jaeckel: Deputy Head of Quantitative Research, VTB Capital
Saeed Amen: Founder, Cuemacro
Francois Bergeaud: FRTB Lead Quantitative Analyst, BNP Paribas
Michael Pykhkin: Manager, Quantitative Risk, U.S. Federal Reserve Board
Brian Norsk Huge: Chief Quantitative Analyst, Danske Markets
Marc Henrard: Managing Partner muRisQ Advisory and Visiting Professor, University College London
Ignacio Ruiz: Founder & CEO, MoCaX Intelligence
Antoine Savine: Quantitative Research, Danske Bank
Alexandre Antonov, Chief Analyst, Danske Bank
Rebecca Declaro: Interest Rates Options Trader, BayernLB
Andrei Lyashenko: Head of Market Risk and Pricing Models, Quantitative Risk Management (QRM), Inc.
Edvin Hopkins: Technical Consultant, NAG
Alexei Kondratyev: Managing Director, Head of Data Analytics, Standard Chartered Bank
Andrey Chirikhin: Founder, Quantitative Recipes
Icarus Gupta: Quantitative Analyst, BNP Paribas
Gilles Artaud: Head of Model Internal Audit, Group Crédit Agricole
Jos Gheerardyn: Co-Founder and CEO, Yields.io
Jörg Kienitz: Partner, Quaternion Risk Management
Christian Fries: Head of Model Development, DZ Bank

GROUP BOOKING OFFER:
WHEN 2 COLLEAGUES ATTEND THE 3RD GOES FREE!
REGISTER TO THE MAIN CONFERENCE & WORKSHOP AND RECEIVE A £300 DISCOUNT

THE 15TH QUANTITATIVE FINANCE CONFERENCE

SPONSORS
IMPORTANT NOTES

The Main Conference presentation files will be made available for download via a password protected website before the event.

Please print out each presentation if you wish to have hard copies before the conference and bring them with you.

Also, Wi-Fi access will be available at the conference venue to view presentations on laptops and mobile devices.

CONFERENCE BOOKING: DISCOUNT STRUCTURE

• When 2 colleagues attend the 3rd goes free!
• Super Early Bird Discount: 25% Until 31st May
• Early Bird Discount: 20% Until 2nd August
• Early Bird Discount: 10% Until 20th September
• Main Conference + Workshop (£300 Discount)
• 70% Academic Discount (FULL-TIME Students Only)

CPD CERTIFICATION

You will be able to receive up to 19 CPD points (19 hours of structured CPD) for attending this event.

The CPD Certification Service was established in 1996 as the independent CPD accreditation institution operating across industry sectors to complement the CPD policies of professional and academic bodies. The CPD Certification Service provides recognised independent CPD accreditation compatible with global CPD principles.

www.cpduk.co.uk

PRE-CONFERENCE WORKSHOP DAY
WEDNESDAY 16TH OCTOBER:

1. The Future of LIBOR: Quantitative Perspective on Benchmarks, Overnight, Fallback and Regulation by Marc Henrard: Managing Partner muRisQ Advisory and Visiting Professor, University College London

2. Machine Learning for Option Pricing by Jörg Kienitz: Partner, Quaternion Risk Management

MAIN CONFERENCE STREAMS

THURSDAY 17TH OCTOBER - DAY ONE:

• Interest Rate Reform Stream
• Machine Learning & Quantum Computing Techniques Stream
• Volatility & Modelling Techniques Stream

FRIDAY 18TH OCTOBER - DAY TWO:

• XVA, AAD, MVA & Initial Margin Stream
• Machine Learning & Quantum Computing Techniques Stream
• Volatility & Modelling Techniques Stream

As always, delegates are not restricted to attend single streams on the main conference. You have the opportunity to hop around the different streams and attend the presentations that benefit you the most.

Stream presentation times will run concurrently with each other.

CONFERENCE LOCATION:

NH Collection Roma Giustiniano
Via Virgilio, 1 E/F/G
00193 Rome
Italy

Tel: +39 06 6828 1601
Website: https://www.nh-collection.com/hotel/nh-collection-roma-giustiniano

THE GALA DINNER IS COMPLIMENTARY FOR ALL CONFERENCE DELEGATES:

Brillo Restaurant
Groupe Valadier
Roma Via della Fontanella 12
00187 Rome
Italy

Tel: +39 06 324 3334
Over the last 20 years, Marc has worked in various areas of quantitative finance. Marc’s career includes Head of Quantitative Research at OpenGamma, Global Head of Interest Rate Modeling for Dexia Group, Head of Quantitative Research and Deputy Head of Interest Rate Trading at the Bank for International Settlements (BIS) and Deputy Head of Treasury Risk also at BIS.

Marc’s research focuses on interest rate modeling and risk management. More recently he focused his attention to market infrastructure (CCP and bilateral margin, exchange traded product design, regulatory costs). He publishes on a regular basis in international finance journals, and is a frequent speaker at academic and practitioner conferences. He recently authored two books: The multi-curve framework: foundation, evolution, implementation and Algorithmic Differentiation in Finance Explained.

Marc holds a PhD in Mathematics from the University of Louvain, Belgium. He has been research scientist and university lecturer in Belgium, Italy, Chile and the United Kingdom.

With the increased expectation of some IBORs discontinuation and the increasing regulatory requirements related to benchmarks, a more robust fallback provision and a clear transition plan for benchmark-linked derivatives is becoming paramount for the interest rate market.

The recent regulations include the EU Benchmark Regulation (BMR) which may have a severe impact on the EUR market as early as January 2020. For all major currencies, new benchmarks have been proposed and the market are in a transition phase. Each transition has his idiosyn- crasies and a commun transition approach cannot be expected. We also describe the new products associated to the new benchmarks and the status in term of liquidity for each market.

On the fallback side, several options have been proposed and ISDA held a consultation on some of them. The results of the ISDA consultation has been to select the “compounding setting in arrears” adjusted rate and the “historical mean/median” spread approach. We analyse the proposed options in details and present an alternative option supported by different working groups. The presentation focuses is on the quantitative finance impacts for derivatives.
WORKSHOP AGENDA

Cash-collateral discounting.

- The standard collateral results and their exact application.
- What is hidden behind OIS discounting (and when it cannot be used)?
- Impact of new benchmarks on valuation

EU Benchmark regulation
The "alternative" benchmarks:

- SOFR, reformed SONIA, ESTER, SARON, TONAR.
- Secured v unsecured choice.
- What about term rates?
- Curve calibration
- SOFR and EFFR: two overnight rates in one currency!

Status in different currencies. Cleared OTC products, liquidity. The different consultations in progress and what to expect from them. Fallback procedure

- ISDA consultation results
- The adjusted rate: compounding setting in arrears
- The adjustment spread: historical mean/median approach
- Quantitative issues with compounding setting in arrears
- Term rates: a credible alternative?
- Value transfer: transfers already incorporated and transfers to come

Clearing House doption

- Differences between bilateral and CCP rules
- EFFR to SOFR transition in USD

Risk management of the fallback

- Delta risk through the transition
- Potential impacts on systems
- What a risk solution would look like
- Multi-curve: double or quit?
- Vanilla becoming exotics: cap/ cuf and swaptions

New products associated to new benchmarks

- Volume and liquidity in the new benchmarks
- Futures on overnight benchmarks
- Deliverable swap futures

Detailed lecture notes for participants.
Some details will be adapted to the evolution of the market.
WORKSHOP PRESENTER

WORKSHOP OUTLINE

The goal of this workshop is to provide a detailed overview of machine learning techniques applied for finance. We offer insights into the latest techniques of using such techniques for modelling financial markets where we focus on pricing and calibration.

We not only tackle the theory but give practical guidance and live demonstrations of the computational methods involved. After introducing the subject we cover Gaussian Process Regression and Artificial Neural Networks and show how such methods can be applied to solve option pricing problems, speed up the calculation of xVAs or apply them for hedging.

We further show how to use existing pricing libraries to interact with machine learning environments often set up in Python. To this end we consider the interaction with Excel, C++ (QuantLib/ORE) and Matlab.

We explain how to set up the methods in Matlab and Python using Keras, Tensorflow, SciKit and PyTorch by explaining the implementation on Matlab source code as well as Jupyter notebooks.

This workshop covers the fundamentals and illustrates the application of state-of-the-art machine learning applications in the financial markets. The examples used for illustration are given to the delegates after the course.

COURSE HIGHLIGHTS

This workshop covers the latest techniques for mastering the application of Gaussian Process Regression methods and Artificial Neural Networks techniques. We consider the theoretical underpinnings and give finance related examples in Matlab and/or Python.

WHAT WE’LL COVER

- Overview of some Machine Learning techniques
- Implementation and Examples
- Gaussian Process Regression for option pricing
- The maths of Neural Networks (with examples)
- Deep learning for pricing using the Heston and other SV models
- Deep learning for calibrating Stochastic Volatility Models

COURSE METHODOLOGY

- Presentation
- Examples (Matlab/Jupyter Notebooks)
WORKSHOP AGENDA

Machine Learning and Finance Overview

- Machine Learning
 - Supervised Learning for Classification, Regression
 - Unsupervised Learning
 - Selfsupervised Learning
 - Reinforcement Learning

- Finance
 - Pricing and hedging
 - Calibration
 - Simulation and exposure
 - Fraud detection

Machine Learning and Finance – Programming Overview

- ML and Financial Applications – an overview
 - Python, Tensorflow, Keras
 - C++, Java, Matlab, QuantLib/ORE

- Interfacing
 - Python – Excel
 - Python – QuantLib/ORE
 - Python – Matlab

- Some illustrations
 - Exposure for Bermudan Swaptions in Tensorflow
 - Hull-White with PDE in Python using QL
 - Monte Carlo Simulation in Tensorflow

Gaussian Process Regression (GPR)

- Intro to GPR and Regression
 - How does it work?
 - Train, Validate, Test
 - Covariance Functions

- Pricing Models and Methods
- GPR and Option Pricing (Heston, American Options,...)

Artificial Neural Networks in Finance – Introduction and examples I

- Intro to Artificial Neural Networks
 - Construction
 - ANN at work
 - ANN math recap (with examples)
 - on Linear Algebra: Points, Vectors, Matrices, Tensors,...
 - on Optimization: Gradient Descent, ...
 - on Autodifferentiation

- Illustration: Learning a function
- It's only an approximation!

- Illustration:
 - Black-Scholes Merton Model
 - Heston Model
 - SABR Model

- Observations
- Preprocessing/Feature engineering
- Overfitting / Underfitting
- Train, Validate, Test
- Hyperparameters

- Different Types of Networks
 - FFNN – Feed Forward
 - CNN – Convolutional
 - RNN – Recursive
 - LSTM – Long Short Term Memory
 - GAN – General Adversial
 - Autoencoders

Artificial Neural Networks in Finance – Introduction and examples II

- Calibration Basics

- Illustration: Deep Calibration
 - Heston Model
 - SABR Model

- Hedging Basics
- LSTM revisited

- Illustration: Deep Hedging
- (Time Series Analysis and Forecasting

Matlab Code / Jupyter Notebooks are provided for this workshop
09:00 – 09:45 KEYNOTE - BRUNO DUPIRE: HEAD OF QUANTITATIVE RESEARCH, BLOOMBERG L.P.

THE PERILS OF PARAMETERIZATION

- Market-makers adopt parametric forms. How consistent is it?
- The geometry of arbitrage. Separating today from tomorrow’s manifold
- The problem with recalibration. Arbitrage in Black-Scholes and Heston models
- Does the FX market know that high strike implied variance should never increase?

Abstract:
Automation, risk management and taste for Markov models lead markets to adopt parametric forms, for volatility for instance. It means that in the space of asset price vectors, the possible states at a future date lie on a low dimensional manifold that sometimes can be separated from the current price vector by a hyperplane, creating an arbitrage. We illustrate this principle with several situations (European type profiles, sticky strike assumption, term structure parameterization, recalibration issues with Black-Scholes, Heston and SABR models). We show that if every day the implied variance, defined as the square of implied volatility times the residual maturity, converges as strikes go to infinity (common assumption in FX options), this level can never go up. In the case of a market that uses a Black-Scholes model every day (flat volatility surface every day but its level may change from one day to the next), we construct explicitly a portfolio of options that gains in value whenever the volatility level has changed, at any time before the first maturity, for any spot price.
09:45 – 10:45 PANEL: MACHINE LEARNING, AI & QUANTUM COMPUTING IN QUANTITATIVE FINANCE

Moderator:
• Bruno Dupire: Head of Quantitative Research, Bloomberg L.P.

Panelists:
• Tony Guida: Executive Director – Senior Quant Research, RAM Active Investments
• Alexei Kondratyev: Managing Director, Head of Data Analytics, Standard Chartered Bank
• Saeed Amen: Founder, Cuemacro
• Blanka Horvath: Honorary Lecturer, Department of Mathematics, Imperial College London
• Jos Gheerardyn: Co-Founder and CEO, Yields.io

Topics:
• What is the current state of utilisation of machine learning in finance?
• What are the distinct features of machine learning problems in finance compared to other industries?
• What are the best practices to overcome these difficulties?
• What’s the evolution of a team using machine learning in terms of day to day operations?
 • Are we becoming more software engineers than quants?
 • What is a typical front office ‘Quant’ skillset going to look like in three to five years time?
• How do we deal with model risk in machine learning case?
• How is machine learning expected to be regulated?
 • Is there a way to make it more explainable?
• Where do you think alternative data fits in with the vogue for machine learning?
 • Have you used alternative data?
 • Is it more for buy side or sell side.
• What applications can you list among its successes?
• How much value is it adding over and above the “classical” techniques such as linear regression, convex optimisation, etc.?
• Do you see high-performance computing (HPC) as a major enabler of machine learning?
• What advances in HPC have caused the most progress?
• What do you see as the most important machine learning techniques for the future?
• What are the main pitfalls of using Machine Learning currently in trading strategies?
• What new insights can Machine Learning offer into the analysis of financial time series?
• Discuss the potential of Deep Learning in algorithmic trading?
• Do you think machine learning and HPC will transform finance 5-10 years from now?
 • If so, how do you envisage this transformation?
 • Can you anticipate any pitfalls that we should watch out for.
• Discuss quantum computing in quant finance:
 • Breakthroughs
 • Applications
 • Future uses

10:45 – 11:15 MORNING BREAK AND NETWORKING OPPORTUNITIES
| STREAM CHAIR: TONY GUIDA: EXECUTIVE DIRECTOR – SENIOR QUANT RESEARCH, RAM ACTIVE INVESTMENTS |
| QUANTUM COMPUTING AND QUANTUM MACHINE LEARNING: QUANT FINANCE PERSPECTIVE |
| by Alexei Kondratyev: Managing Director, Head of Data Analytics, Standard Chartered Bank |
| • Gate model and analog quantum computing |
| • Quantum Neural Networks |
| • Boltzmann Machines and Born Machines |

MACHINE LEARNING & QUANTUM COMPUTING TECHNIQUES STREAM

| STREAM CHAIR: ALESSANDRO GNOATTO: PROFESSOR OF MATHEMATICAL FINANCE, UNIVERSITÀ DEGLI STUDI DI VERONA |
| OPTIMAL INVESTMENT STRATEGY IN STOCHASTIC AND LOCAL VOLATILITY MODELS |
| by Vladimir Piterbarg: MD, Head of Quantitative Analytics and Quantitative Development at NatWest Markets |
| • We revisit the classical Merton optimal allocation problem |
| • We consider local and stochastic volatility models |
| • Significant corrections to the Merton ratio arise from hard to observe behaviour of the variance process around zero |
| • Adjustment to the myopic Merton ratio can be largely deduced from observed option prices |
| • Deep learning as an approach to determine model-free optimal investment strategy |

VOLATILITY & MODELLING TECHNIQUES STREAM

| STREAM CHAIR: MARC HENRARD: MANAGING PARTNER muRisQ ADVISORY AND VISITING PROFESSOR, UNIVERSITY COLLEGE LONDON |
| A QUANT PERSPECTIVE ON LIBORFallback |
| by Marc Henrard: Managing Partner muRisQ Advisory and Visiting Professor, University College London |
| • The current status on fallback |
| • Potential difficulties with the proposed options |
| • Value transfer in the fallback |
| • The RFR term rates |

INTEREST RATE REFORM STREAM
MACHINE LEARNING & QUANTUM COMPUTING TECHNIQUES STREAM

12:00 – 12:45
MACHINE LEARNING + CHEBYSHEV TECHNIQUES FOR RISK CALCULATIONS: BOOSTING EACH OTHER
by Mariano Zeron: Head of Research and Development, MoCaX Intelligence

The computation of risk metrics poses a huge computational challenge to banks. Many different techniques have been developed and implemented in the last few years to try and tackle the problem. We focus on Chebyshev tensors enhanced by machine learning, showing why they are such powerful pricing approximators in risk calculations. We show how the presented unique mix of techniques can be applied in different calculations.

We illustrate with Numerical results obtained in a tier-1 bank internal systems the computational gains these techniques bring to FRTB IMA.

In particular, We will give special attention on how to side-step the curse of dimensionality and how machine learning techniques can be used to boost Chebyshev tensors.

VOLATILITY & MODELLING TECHNIQUES STREAM

12:00 – 12:45
PRICING COMMODITY SWING OPTIONS
by Andrea Pallavicini: Head of Equity, FX and Commodity Models, BANCA IMI

• Modelling futures with different delivery periods.
• Imposing volatility smiles.
• Numerical investigations with swing option contracts.

INTEREST RATE REFORM STREAM

12:00 – 12:45
NEW INTEREST RATE BENCHMARKS: VALUATION AND RISK MANAGEMENT ISSUES
by Marco Bianchetti: Head of Fair Value Policy, Intesa Sanpaolo and Marco Scaringi: Quant Risk Analyst, Fair Value Policy Office, Intesa Sanpaolo

• Classic vs Modern Benchmark Rates: EONIA, ESTER, EURIBOR and co.
• Pricing and risk management with past, present and future interest rates
• Focus on XVAs
• Bye-Bye multi-curves?

Abstract
Once upon a time there was a classic financial world where all the interest rates were equal and considered a good proxy of the ideal risk-free rate required as basic building block of no-arbitrage pricing theory. In the present financial world after the credit crunch, multiple yield curves and volatility cubes are required to price financial instruments.

The current global reform of interest rate benchmarks is radically changing the scenario, adding more and more interest rates, with important consequences for pricing and risk management of financial instruments, but could also lead us back to a future financial world based again on a classic single-curve, few-volatility framework.
14:00 – 14:45
PAYOFF SCRIPTING LANGUAGES: SUNG AND UNSUNG GLORIES AND NEXT GENERATION
by Jesper Andreasen (Kwant Daddy): Global Head Of Quantitative Research, Saxo Bank

- Knowledge: There is (i). what you know, (ii). what you know you don’t know, and (iii). what you don’t know you don’t know
- Scripting languages and exotic derivatives
- Scripting languages and XVA
- Scripting languages and AAD and regulatory capital
- Scripting languages and transactions, trade life cycle, back-office, and anti-money laundering

14:00 – 14:45
LOOKING FORWARD TO BACKWARD-LOOKING RATES: A MODELING FRAMEWORK FOR TERMS RATES REPLACING LIBOR
by Fabio Mercurio: Head of Quant Analytics, Bloomberg L.P.

- A quick overview of the LIBOR transition
- Introducing the concept of extended zero coupon bond
- Defining and modeling in-arrears rates
- Modeling both forward-looking and backward-looking forward rates
- Modeling general forward-rate dynamics
- Introducing the generalized Forward Market Model (FMM)
- Differences between the FMM and the classic LMM
- The valuation of vanilla derivatives in the FMM
- Numerical examples

14:00 – 14:45
QUANTAMENTAL FACTOR INVESTING USING ALTERNATIVE DATA AND MACHINE LEARNING
by Arun Verma: Quantitative Research Solutions, Bloomberg, LP

Abstract
To gain an edge in the markets quantitative hedge fund managers require automated processing to quickly extract actionable information from unstructured and increasingly non-traditional sources of data. The nature of these “alternative data” sources presents challenges that are comfortably addressed through machine learning techniques. We illustrate use of AI and ML techniques that help extract derived signals that have significant alpha or risk premium and lead to profitable trading strategies.

This session will cover the following topics:
- The broad application of machine learning in finance
- Extracting sentiment from textual data such as news stories and social media content using machine learning algorithms
- Generated automated data driven insights/alerts for short term market prediction
- Construction of scoring models and factors from complex data sets such as supply chain graph, options (implied volatility skew, term structure), Geolocational datasets and ESG (Environmental, Social and Governance)
- Robust portfolio construction using multi-factor models by blending in factors derived from alternative data with the traditional factors such as fama-french five-factor model.
A CRITICAL (RE-)VIEW ON INTEREST RATE MODELLING FOR PORTFOLIO SIMULATIONS, DERIVATIVE VALUATION, RISK MINIMIZATION, (DEEP) HEDGING AND ALM

by Christian Fries: Head of Model Development, DZ Bank and Peter Kohl-Landgraf, XVA Management, DZ Bank

Portfolio simulations and valuations (e.g., xVAs) require a high dimension risk factor simulation (“market simulation”, “world simulation”). Another area, where high dimensional risk factor simulations are required, are hedge strategies in general risk minimization problems (where “deep hedging” is an appealing method) and ALM simulations.

For such applications, interest rates are very often modelled with short rate models with low (Markov-)dimension (e.g., affine term structure models with or without stochastic volatility). In the context of xVA short rate models have seen a renaissance. While this is mainly due to computational efficiency – reducing the amount of memory required to represent the interest rate curve (e.g. to just a few (or one) Markovian state variable) –, it comes as a surprise from a modelling perspective:

It is known that such low dimension models lead to unrealistic interest rate curve modelling and inappropriate risk management of complex derivatives (c.f. Piterbarg, Filipovic, F., etc. (at least 2003, 2007)).

This presentation will review the following points

- Recap the basic notions of Machine learning and their related specificities for ML in finance
- Summarising what are the notions of explainability and interpretability in the field of deep learning models for stock selection.
- Introducing a taxonomy of methods for interpretability
- Equity US stocks universe use case to explain the different techniques and results for:
 - Global & Local models
 - Partial dependence
 - Expanding the use case by focussing on two deep learning models for stock selection
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural nets (CNN)

LOOKING FORWARD TO BACKWARD-LOOKING RATES: COMPLETING THE FORWARD MARKET MODEL

by Andrei Lyashenko: Head of Market Risk and Pricing Models, Quantitative Risk Management (QRM), Inc.

- Generalized Forward Rate Model
- Building zero-bond price curve evolution
- Building local bank account process
- Local stochastic extension with HJM
- Local stochastic extension with Cheyette
- Implying short rate process
- Numerical examples

Recap the basic notions of Machine learning and their related specificities for ML in finance

Summarising what are the notions of explainability and interpretability in the field of deep learning models for stock selection.

Introducing a taxonomy of methods for interpretability

Equity US stocks universe use case to explain the different techniques and results for:

- Global & Local models
- Partial dependence
- Expanding the use case by focussing on two deep learning models for stock selection
- Multi-Layer Perceptron (MLP)
- Convolutional Neural nets (CNN)
Making Python Parallel with Large Datasets
by Saeed Amen: Founder, Cuemacro

Python is a great language for data science. When working with large datasets which don’t fit entirely in memory, we may need to use some different approaches. In this talk we will discuss various Python libraries which are ideal for working with large time series datasets in a pandas-like way, including dask and vaex. We shall also explore how to make computation parallel in Python, talking about the differences between threading and multiprocessing, and wrappers like concurrent futures. We shall also talk about using the very powerful celery to distribute tasks. We shall illustrate the talk with a Jupyter notebook, including examples from finance (such as using FX tick datasets).

On the Forward Smile
by Thomas Roos: Consulting Partner, Quantitative Financial

Abstract
Using short-time expansion techniques, we obtain analytic implied volatilities for European and forward starting options for a family of stochastic volatility models with arbitrary local volatility component and time dependent (piecewise constant) parameters. The formulas can be used to efficiently calibrate the model to European options at two expiries and to calculate the spanning forward starting option price.

IBOR Transition and Linkage to the Risk & Capital Framework
by Adolfo Montoro: Director, Global Head of Market Data Strategy & Analytics, Market Valuation Risk Management
Deutsche Bank

16:00 – 16:45
IBOR TRANSITION AND LINKAGE TO THE RISK & CAPITAL FRAMEWORK
by Adolfo Montoro: Director, Global Head of Market Data Strategy & Analytics, Market Valuation Risk Management
Deutsche Bank

16:00 – 16:45
ON THE FORWARD SMILE
by Thomas Roos: Consulting Partner, Quantitative Financial

Abstract
Using short-time expansion techniques, we obtain analytic implied volatilities for European and forward starting options for a family of stochastic volatility models with arbitrary local volatility component and time dependent (piecewise constant) parameters. The formulas can be used to efficiently calibrate the model to European options at two expiries and to calculate the spanning forward starting option price.
16:45 – 17:30
DEEP LEARNING VOLATILITY
by Blanka Horvath: Honorary Lecturer, Department of Mathematics, Imperial College London

We present a consistent neural network based calibration method for a number of volatility models— including the rough volatility family—that performs the calibration task within a few milliseconds for the full implied volatility surface. The aim of neural networks in this work is an off-line approximation of complex pricing functions, which are difficult to represent or time-consuming to evaluate by other means. We highlight how this perspective opens new horizons for quantitative modelling: The calibration bottleneck posed by a slow pricing of derivative contracts is lifted. This brings several model families (such as rough volatility models) within the scope of applicability in industry practice. As customary for machine learning, the form in which information from available data is extracted and stored is crucial for network performance. With this in mind we discuss how our approach addresses the usual challenges of machine learning solutions in a financial context (availability of training data, interpretability of results for regulators, control over generalisation errors). We present specific architectures for price approximation and calibration and optimize these with respect different objectives regarding accuracy, speed and robustness. We also find that including the intermediate step of learning pricing functions of (classical or rough) models before calibration significantly improves network performance compared to direct calibration to data.

16:45 – 17:30
INDUSTRY-GRADE FUNCTION APPROXIMATION IN FINANCIAL APPLICATIONS
by Peter Jaeckel: Deputy Head of Quantitative Research, VTB Capital

- All maths has to be reduced to simple additions. Even multiplications.
- Simple methods: Taylor, Padé, Inverse Taylor, Householder
- Chebyshev, Economization, Chebyshev-Padé, Linear (Maehly) vs Nonlinear (Clenshaw-Lord)
- Remez, Remez I/II, and all that Voodoo
- The Russian source: Remez’s weight function
- Taking the weight function into the problem: Remez II B
- Examples

20:00 Gala Dinner. This is complimentary for all conference delegates.

Brillo Restaurant
STREAM CHAIR:
HELYETTE GEMAN, PHD, PHD:
PROFESSOR OF MATHEMATICAL
FINANCE, BIRKBECK – UNIVERSITY OF
LONDON & JOHNS HOPKINS
AND
RITA LAURA D'ECCLESIA:
PROFESSOR, UNIVERSITÀ DEGLI STUDI
DI ROMA "LA SAPIENZA"

09:00 – 09:45
SMART DERIVATIVE CONTRACTS:
RETHINKING OTC DERIVATIVES IN THE
DIGITAL ERA
by Rebecca Declara: Interest Rates
Options Trader, BayernLB

- Current state of bilateral and CCP-
cleared derivatives
- Digital legal contracts
- Digitization of OTC derivatives –
 Redefining post-trade processes
- Technological aspects and
 requirements
- OTC derivatives in the digital era

STREAM CHAIR:
IGNACIO RUIZ:
FOUNDER & CEO,
MoCaX INTELLIGENCE

09:00 – 09:45
APPLYING MACHINE LEARNING FOR
TROUBLESHOOTING CVA EXPOSURE
CALCULATION
by Shengyao Zhu: Senior Quantitative
Analyst, XVA Trading Desk, Nordea

- Applying convolutional neural
 network to characterizing and
 troubleshooting CVA exposures used
 in XVA and Risk.
- How we choose the model
 specification to strike a balance
 between model performance and
 decision speed.
- Compare the model performance
 with human analyst.
- Possible extension for this model to
 other area like FRTB.
09:45 – 10:30

EFFICIENT NUMERICAL TECHNIQUES FOR PARAMETRIC PROBLEMS IN OPTION PRICING

by Kathrin Glau: Lecturer in Financial Mathematics, Queen Mary University of London

This talk presents some recent developments of efficient numerical techniques: The implied volatility is one of the most frequently used functions in finance. Its efficient computation for instance supports large-scale computations in machine learning algorithms to predict the volatility. In (Glau, Herold, Madan, and Pötz 2017) https://arxiv.org/abs/1710.01797, a new method to efficiently compute the implied volatility based on multivariate Chebyshev interpolation was introduced. We also show how further adaptations of the algorithm have lead to an even higher performance.

The method relies on polynomial interpolation. It is well-known that polynomial interpolation can be very efficient for low dimensional problems. Can we make polynomial interpolation also efficient for high dimensional problems?

09:45 – 10:30

KVA UNDER IMM AND ADVANCED APPROACHES

by Justin Chan: Quantitative Strategy, Adaptiv, FIS

The two largest components of Capital Valuation Adjustment (KVA) are the costs of Counterparty Credit Risk (CCR) and CVA capital. For a bank using the most advanced capital models – Internal Models Method for CCR and the incoming SA-CVA capital – an accurate KVA involves forward simulating expected exposures (EE) over the lifetime of the portfolio – potentially a Monte Carlo in a Monte Carlo. We present a practical regression-based solution.

- Simulating EE: from regulatory stressed real-world measure to market implied measure
- A comparative study of regression vs brute force nested Monte Carlo
- SA-CVA: extending from simulating forward EE to simulating forward CVA sensitivities

09:45 – 10:30

ASYMPTOTICS CONTROL IN THE NEURAL NETWORK

by Alexandre Antonov: Chief Analyst, Danske Bank

- Kolmogorov-Arnold Theorem and asymptotics
- Control variate functions with the right asymptotics
- Neural networks with zero asymptotics
- Numerical experiments

A. Antonov and V. Piterbarg

10:30 – 11:00

MORNING BREAK AND NETWORKING OPPORTUNITIES
MAIN CONFERENCE DAY TWO – FRIDAY 18TH OCTOBER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:45</td>
<td>11:00 – 11:45</td>
<td>11:00 – 11:45</td>
<td></td>
</tr>
<tr>
<td>P PRICING BY Q LEARNING
by Andrey Chirikhin: Founder, Quantitative Recipes</td>
<td>FUTURES AND OPTIONS ON BITCOINS:
A TENTATIVE ARBITRAGE APPROACH
by Helyette Geman, PhD, PhD: Professor of Mathematical Finance, Birkbeck – University of London & Johns Hopkins</td>
<td>EFFICIENT CALCULATION TECHNIQUES FOR CREDIT EXPOSURE IN THE PRESENCE OF INITIAL MARGIN
by Michael Pykhtin: Manager, Quantitative Risk, U.S. Federal Reserve Board</td>
<td></td>
</tr>
</tbody>
</table>
| | | • Modeling collateralized exposure
| | | • Producing exposure on a daily simulation time grid without daily revaluations or daily IM calculations
| | | • Reducing simulation noise in the presence of IM
| | | • Alternatives to calculating IM along simulation paths |
11:45 – 12:30
DO DIAMONDS SHINE IN INVESTOR PORTFOLIOS
by Rita Laura D’Ecclesia: Professor, Università degli Studi di Roma “La Sapienza”

Diamonds are emerging as a new investment asset, providing great opportunities for trading, investing and diversification. Hedge funds and financial intermediaries have shown increased interest in the market and recent available data allow us to study its features and dynamics. The lack of a standardization system for the diamond commodity prevented the existence of an exchange regulated trading platform for diamonds which is being created and is starting to play an important role. Over the last decade trading diamonds has been advertised by banks and financial intermediaries as a hedge even if not enough evidence was provided. Diamond stocks have also been considered as a promising diversification asset for investors’ portfolios (McKeough, 2015; Neil, 2014; Wilson and England, 2014; Cameron, 2014), though, to our best knowledge, neither academic scholars nor industry professionals have tested this hypothesis.

In this paper we test if diamonds represent a hedge in investor’s portfolios, however the market of diamond-mining stocks does not represent a valid investment alternative to the diamond commodity market.
13:30 – 15:00
EXTENDED TALK: DEFAULT TIMING AND CORRELATION MODEL FOR DRC (FRTB INTERNAL MODEL)
by Francois Bergeaud: FRB Lead Quantitative Analyst, BNP Paribas and Mirela Predescu: Deputy Head of Credit – Market and Counterparty Risk, BNP Paribas

Part 1: Default timing / Correlation model (F. Bergeaud)
• Calibrating market Asset and Default correlation
• Correlated default timing in structural model
• Hedging extreme losses

Part 2: Model risk in DRC: Choice of Copula (M. Predescu)
• Choice of Copula
• Copula Estimation
• Impact on DRC

13:30 – 15:00
EXTENDED TALK: BALANCE SHEET XVA BY DEEP LEARNING AND GPU
by Stéphane Crépey: Univ Evry, France, and Rodney Hoskinson: ANZ Bank, Singapore

Abstract:
Two competing XVA paradigms are a semi-replication framework and a cost-of-capital, incomplete market approach. Burgard and Kjaer once dismissed an earlier incarnation of the Albanese and Crépey holistic, incomplete market XVA model as being elegant but difficult to solve explicitly. We show that the model (set on a forward/backward SDE formulation) is not only elegant, but also able to be solved efficiently using GPU computing combined with AI methods in a whole bank balance sheet context. We calculate the Mark-to-Market process cube (or its increment, in the context of trade incremental XVA computations) using GPU computing and the XVA process cube using Deep Learning (including joint ES and VaR) Regression methods.

15:00 – 15:15
AFTERNOON BREAK AND NETWORKING OPPORTUNITIES

15:15 – 16:00
CLOSING PRESENTATION:
NLP AND QUANT INVESTING: FINDING SIGNALS IN THE NOISE
Saeed Amen: Founder, Cuemacro

At it’s most basic, Natural Language Processing can be seen as a way for a computer to understand human language. Given that the vast majority of data comes in unstructured form, the potential opportunities for structuring, modeling and implementing text-based investment strategies are huge. For all those on the buy-side, understanding NLP – and the data, tools and processes needed to make it a success – is essential.

• How NLP has developed alongside the explosion of text-based content.
• Use-cases today for NLP within investment processes.
• Factors to consider when building NLP into a quantitative strategy

END OF CONFERENCE
Both through regulation and industry practice, there is an increasing number of risk calculations that need to be done on a regular basis. These calculations require the valuation of portfolios on up to hundredths of thousands of scenarios making them computationally very expensive in time and cost.

MoCaX technology, based on Chebyshev Spectral Decomposition methods, is a methodology and software application which massively reduces the computational burden in a risk calculation. This is achieved by pricing the portfolio on very small number of pre-defined collection of points yielding an object capable of approximating a pricing function and its greeks to a very high degree of accuracy. The object can then be evaluated on thousands of risk scenarios in an ultra-efficient and numerically stable manner.

Several benefits are obtained with this technology. Applications include Market Risk VaR, IMA-FRTB, Dynamic Initial Margin for MVA and IMM, Exposure profiles for CVA and IMM, what-if analysis tools, etc.

mocaxintelligence.com | i.ruiz@iruiztechnologies.com

Matlogica specializes in software solutions that allow to accelerate Monte-Carlo Simulations using highly parallel vectorized software and automatic adjoint differentiation. At the moment we are developing a breakthrough C++ tool for AAD. Our unique approach allowed us to obtain impressive benchmarks compared to other well known AAD tools. If you are interested in getting the best performance from your existing or new C++ library, we can offer quick proof-of-concept projects to gage the possible benefits our tool can bring to you.

Matlogica brings together a broad range of specialists: from quantitative analysts and computer science engineers to academic researchers. The company was organized around an invention which forms the kernel of the new Adjoint Differentiation Tool.

We specialize in parallel computations in a wide range of areas including XVA, MVA, Monte-Carlo Simulations, Derivative pricing and Risk, Large Portfolio simulations, Model calibrations such as Heston SV and LMM, among others.

matlogica.com

FIS Adaptiv provides solutions for enterprise-wide risk management solutions, spanning trade capture to operations management. Adaptiv Analytics is a state-of-the-art calculation engine that offers market-leading performance for market risk, counterparty credit risk, and regulatory calculations. AAD-enabled Analytics software is the latest exciting development from FIS Adaptiv. This will add to the suite of performant technologies upon which Analytics is built, which includes vectorization and GPU support, and will enable real-time calculation of exact XVA sensitivities for effective risk reporting, credit limit monitoring, and position management.

Through the depth and breadth of our solutions portfolio, global capabilities and domain expertise, FIS serves more than 20,000 clients in over 130 countries. Headquartered in Jacksonville, Fla., FIS employs more than 55,000 people worldwide and holds leadership positions in enterprise risk management, payment processing, financial software and banking solutions. Providing software, services and outsourcing of the technology that empowers the financial world, FIS is a Fortune 500 company and is a member of Standard & Poor’s 500© Index.

Yields.io is the first FinTech platform that uses AI for real-time model risk management on an enterprise-wide scale.

Our clients use our solution to speed up model validation tasks, to generate regulatory compliant documentation and to industrialize model monitoring. The platform works with all models that are used within the financial sector such as credit risk models, valuation algorithms, market risk, AML, AI and behavioural models.

Yields.io was founded by Jos Gheerardyn and Sébastien Viguié. The company is expanding quickly and has offices in Brussels and London. Yields.io has an international portfolio of clients with both investment banks as well as regional financial institutions.

Welcome to The Machine Learning Institute Certificate in Finance (MLI)

Quantitative finance is moving into a new era. Traditional quant skills are no longer adequate to deal with the latest challenges in finance. The Machine Learning Institute Certificate offers candidates the chance to upgrade their skill set by combining academic rigour with practical industry insight.

The Machine Learning Institute Certificate in Finance (MLI) is a comprehensive six-month part-time course, with weekly live lectures in London or globally online. The MLI is comprised of 2 levels, 6 modules, 24 lecture weeks, lab assignments, a practical final project and a final sit down examination using our global network of examination centres.

This course has been designed to empower individuals who work in or are seeking a career in machine learning in finance. Throughout our unique MLI programme, candidates work with hands-on assignments designed to illustrate the algorithms studied and to experience first-hand the practical challenges involved in the design and successful implementation of machine learning models. The MLI is a career-enhancing professional qualification, that can be taken worldwide.

The Numerical Algorithms Group (NAG) are experts in numerical algorithms, software engineering and high-performance computing. They have served the finance industry with numerical software and consulting services for over four decades because of their outstanding product quality and technical support. Specifically, relevant to the finance industry, NAG pioneer in the provision of the NAG Library – numerical, machine learning and statistical components ideal for building Quant Libraries, Risk Applications and the like.

NAG also provides best-in-class C++ operator-overloading AD tools for CPU and GPU called dco (derivative computation through overloading) and dco/map (dco meta adjoint programming). The NAG Library and AD tools are used by many of the largest Investment Banks where they are embedded in Quant Libraries and XVA applications. As a not-for-profit company, NAG reinvests surpluses into the research and development of its products, services, staff and its collaborations.
TO REGISTER, PLEASE EMAIL THE COMPLETED BOOKING FORM TO: sales@wbstraining.com

HOTEL CONTACT INFORMATION:
NH Collection Roma Giustiniano
Via Virgilio, 1 E/F/G
00193 Rome
Italy
Tel: +39 06 6828 1601
Email: nhcollectiongiustiniano@nh-hotels.com

SPONSORSHIP:
World Business Strategies Ltd, offer sponsorship opportunities for all events, e-mail headers and the web site. Contact sponsorship via telephone on: +44 (0)1273 201 352

DISCLAIMER:
World Business Strategies command the rights to cancel or alter any part of this programme.

CANCELLATION:
By completing this form, the client hereby enters into an agreement stating that if a cancellation is made in writing within two weeks of the event date no refund shall be given. However, in certain circumstances a credit note may be issued for future events. Prior to the two-week deadline, cancellations are subject to a fee of 25% of the overall course cost.

DISCOUNT STRUCTURE:
The discount is available on any day permutation, and can be combined across delegates within the same company (only at the time of booking and not retrospectively).

70% Academic Discount / FULL-TIME Students Only

<table>
<thead>
<tr>
<th>CONFERENCE FEE STRUCTURE</th>
<th>Early Bird Discount: 20% until 3rd August</th>
<th>Early Bird Discount: 10% until 30th September</th>
<th>Regular Event Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference & Workshop (£300 Discount):</td>
<td>£2298.20 + IT VAT</td>
<td>£2498.10 + IT VAT</td>
<td>£2698.00 + IT VAT</td>
</tr>
<tr>
<td>Conference Only:</td>
<td>£1599.20 + IT VAT</td>
<td>£1799.10 + IT VAT</td>
<td>£1999.00 + IT VAT</td>
</tr>
<tr>
<td>Workshop Only (No Discount):</td>
<td>£999.00 + IT VAT</td>
<td>£999.00 + IT VAT</td>
<td>£999.00 + IT VAT</td>
</tr>
</tbody>
</table>

By completing and submitting this form, you accept WBS Training’s GDPR Policy (www.wbstraining.com/details/gdpr) and agree to communication from time to time with relevant details and information on WBS Training events and services.