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Goal

I Machine learning (ML), deep learning (DL), and neural
networks (NN) are becoming a standard piece of kit

I NNs have been proposed to 1) speed up slow function
calculations and 2) calculate conditional expectations (see eg
[AK], [MG] for a typical approach)

I Other applications have being explored: [AS], [BH], [BGT],
[GR], [PHL] etc

I Generally the “learning” points are concentrated in the main
body of a distribution and not its tails. A typical NN fitted to
observations extrapolates outside of the learning “cloud” in a
totally uncontrolled manner

I Our goal is to incorporate extra information we have
(asymptotics) into an NN construction in other to control
extrapolation

I Many important reasons such as stress testing of financial
models, explainability, etc.
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NN I

An NN is a multi-dimensional function parametrization

x → x (1) = σ
(
W (1)x + b(1)

)
→ x (2) = σ

(
W (2)x (1) + b(2)

)
· · ·

Fθ(x) = x (N) = W (N)x (N−1)

where
I each line in the scheme above is called a layer
I non-linear functions σ are called activation functions and are

normally fixed
I the adjustable parameters for an NN are the weight matrices

W (i) and bias vectors b(i)
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NN II

I We denote the NN parametrization as Fθ(x) where θ is the
collection of all adjustable parameters over the layers,
θ =

{
W (n), b(n)

}N

n=1
I The parameters θ are determined by the so-called learning

process (non-linear optimization in the old-speak):

Given input points
{

x (p), y (p)
}P

p=1
and a loss function, eg

L(θ) =
P∑

p=1

(
Fθ

(
x (p)

)
− y (p)

)2

get optimal parameters θ∗ that minimizes the loss function

I The non-linear optimization is performed numerically
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NN III

I The NN parametrization is numerically attractive – its
derivatives, necessary for the optimization, can be rapidly
calculated

I The resulting function F ∗θ (x) approximates a “conditional
expectation” E [Y |X ].

I If the points y (p) = f
(
x (p)

)
for some function f , the NN

approximates the function itself, Fθ ' f
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Advantages and Drawbacks

Advantages
I Highly efficient and customizable (free parameters control,

bespoke layers, GPU acceleration, cloud etc) software
I Universality of the approximation
I Theoretical guarantee of success given sufficient data

Drawbacks
I Numerically solving a non-linear highly multi-dimensional

problem is unstable – local minima, overfitting, etc.
I No asymptotic (extrapolation) control in standard NNs – our

main focus
I No interpolation control in standard NNs – even if the

training points are well fit, one can potentially observe an
unintuitive behavior between them, esp. for multi-layer NN
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Theoretical Basis

Two theorems form the theoretical basis for the NN construction:
I Cybenko [Cyb] and Hornik [HSW]
I Kolmogorov-Arnold (Hilbert’s 13th problem extension)

See a review of [BG]

In [AKP] we show that information about the asymptotics is not
extractable from the above theorems (esp., the K-A)
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Asymptotics Control: The Plan

I Start with a function f (x) we want to approximate while
preserving its asymptotics

I Prerequisite: Know the asymptotics!
I First step: find a control variate function that has the same

asymptotics – either in all directions or partially
I Proposal: use a multidimensional spline S(x) which has the

same asymptotics as f (x)
I The rest: approximate the residual function

R(x) = S(x)− f (x) with a special NN having vanishing
(zero) asymptotics
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1D Spline Reminder

I Spline (or cubic spline) S(x) is a piece-wise cubic polynomial
between its nodes {hi}Ni=1, i.e.

S(x) = ai + bix + cix2 + dix3 for x ∈ [hi , hi+1)

I Values, derivatives and the second derivatives coincide at the
nodes, i.e. S(hi − ε) = S(hi + ε), S ′(hi − ε) = S ′(hi + ε) and
S ′′(hi − ε) = S ′′(hi + ε)

I These are almost sufficient to fix all the spline coefficients: we
need 2 extra conditions — at the first node and the last one
— to finish the job

I The classic spline has zero second derivatives at the
boundaries (at the first node and the last one)
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1D Spline without asymptotic control: BS approximation
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Figure: Classic spline fits the BS price at the four nodes (in green) and
deviates at the tails

Antonov, Konikov & Piterbarg Asymptotics Control in NN 10/ 40



1D Spline with Asymptotics Control

I Instead of zeroing the second derivatives one can choose to fix
the first derivatives at boundary points to arbitrary values

I This can be a way to fix asymptotics
I Suppose that we know the (calculation-heavy) original

function behaviour in its tails, i.e. it can be analytically
approximated: f (x) ' f−(x) for x < h0 and f (x) ' f+(x) for
x > hN+1 for large negative h0 and large positive hN+1

I The recipe is simple:
I Add the points h0 and hN+1 to the spline nodes
I Make the spline pass through them, S(h0) = f−(h0) and

S(hN+1) = f+(hN+1),
I Also fix its first derivatives, S ′(h0) = f ′−(h0) and

S ′(hN+1) = f ′+(hN+1),
I This procedure does not guarantee the second derivatives fit
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1D Spline with Asymptotics Control: Continuous Second
Derivatives

I One can also assure the continuity of the second derivatives
I For this we pick up a point between h0 and h1, say h 1

2
, and

find (analytically) a value S
(
h 1

2

)
such that we match the

second derivative at h0, S ′′(h0) = f ′′−(h0)
I The same is valid for the right tail
I According to our experiments, the second derivatives control

helps approximate “reasonable” functions (see [AKP] for
details)
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1D Spline with Asymptotics Control: BS Approximation
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Figure: Spline fits the BS price for a fixed vol
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Multi-Dimensional Splines with Asymptotics

I In a multi-dimensional setup we use a tensor product of 1D
splines with asymptotics control in each direction (where they
are available)

I Details can be found in [AKP]
I Below we demonstrate the asymptotics control effect using

example of the BS price for T = 1, K = 100 in the log scale
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2D Spline with Asymptotics Control: BS Approximation
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Figure: Blue surface: approximation; red dots: corners of the asymptotic
region; dark blue dots: spline nodes (a 4× 4 grid)
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2D Spline with Asymptotics Control: Difference vs BS
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Figure: Blue surface: difference; red dots: corners of the asymptotic
region; dark blue dots: spline nodes
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2D Spline without Asymptotics Control: BS Approximation
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Figure: Blue surface: approximation; red dots: corners of the asymptotic
region; dark blue dots: spline nodes
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2D Spline without Asymptotics Control: Difference vs BS
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Figure: Blue surface: difference; red dots: corners of the asymptotic
region; dark blue dots: spline nodes
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NN with Vanishing Asymptotics I

I We propose to use the following representation of the function
with vanishing/zero asymptotics

fG(x) =
N∑

i=1
λi G

(
x | c(i),w (i)

)
where G (x | c,w) is a Gaussian ”bell” with a centre c (D-dim
vector) and a width w (D × D-dim matrix)1:

G (x | c,w) = exp
(
−1

2(x − c)T (w−1)T w−1(x − c)
)

I A numerical solver2 changes the parameters of the function
fG(x) to match the target values at the learning points

1In our numerical experiments we use a diagonal matrix
2The standard ADAM solver from Keras in our experiments
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Points of Note

I We do not let the bells have arbitrary centres and widths: to
guarantee zero asymptotics at a specific boundary we need to
restrict them

I First idea: have a custom loss function that penalizes the bells
that get close or over the asymptotic bounds

I According to our experiments, it is better to use a mapping
function to make sure bells’ centres and widths are where we
want them to be

I A few hundreds of nodes/basis functions is enough to achieve
excellent precision in our tests
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Numerical experiments

We test our ideas on:
I the Black-Scholes function of spot and vol – described in

details in [AKP]
I more complicated 4-dimensional SABR model – described

below
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4-dimensional SABR test

We test the normalized SABR model

dS(t) = v α(t)S(t)β dW1(t),
dα(t) = γ α(t) dW2(t),
S(0) = 1, α(0) = 1.

where v is an (approximate) ATM vol.
I Exact option price E

[
(S(T )− K )+

]
analytics are available in

[AKS] for our case of zero correlation.
I We fix the time T = 1 and study the normal implied volatility

of the options above, a function of 4 arguments

σN(v , β, γ,K )

Remark. All the experiment details can be found in our support
paper [AKP].
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Parameters

I To demonstrate the flexibility of our approach, we control
asymptotics in some but not all dimensions.
We perform two experiments:
I control asymptotics in the dimensions of the ATM vol v and

the strike K only, and let the NN extrapolate in β and γ
I control asymptotics in the dimensions of v , K and γ while β is

our of control

I We sample four-dimensional vector of uncorrelated standard
Gaussian random numbers, (z1, . . . , z4), and map those into
some reasonable ranges for our variables.
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Bounds

Since all the parameters are normalized (all zj are standard
Gaussian), we use the same bounds in all dimensions
I The learning bound Ll = 1.0 that defines the region where we

train the NN on non-asymptotic values;
I The asymptotic bound La = 1.5 that defines the region

outside of which we use asymptotics;
I The measurement bound Lm = 2.0 that defines the region

where we measure performance/errors.

We then use [−Ll , Ll ]4 , [−La, La]4 , [−Lm, Lm]4 as the learning,
asymptotic and measurement regions.

Remark. Asymptotic bounds are only relevant for
asymptotics-controlled dimensions.
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Tables below show the corresponding standard, i.e non-normalized,
SABR parameter bounds

lower bound upper bound
v 0.034 0.677
β 0.023 0.977
γ 0.369 2.421
K 0.538 1.605

Table: Learning bounds for standard SABR parameters.

lower bound upper bound
v 0.016 1.432
β 0.001 0.999
γ 0.09 2.448
K 0.073 3.595

Table: Asymptotic bounds for standard SABR parameters.
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lower bound upper bound
v 0.008 3.032
β 0 1
γ 0.01 2.5
K 0 13.723

Table: Measurement bounds for standard SABR parameters.

Note that the bounds for the strike depend on the ATM vol (see
[AKP]) and the value in the table above correspond to the largest
vol.
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Asymptotic Splines and Constrained Radial Layers

I In the asymptotic spline we use a rather sparse grid of 3 nodes
in each of the four dimensions of the normalized values of
{−1, 0, 1}4

I The goal here is to control the asymptotics and not
necessarily have a close fit inside the learning region – that
will be taken care of by the NN.

I Having removed the asymptotics in the v , K or γ dimension,
we train the Constrained Radial Layer (CRL) NN to the
residual.
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Testing: Configuration

I The training set consists of 10, 000 standard Gaussian
4-dimensional samples of (z1, . . . , z4) that are then converted
to (v , β, γ,K ) using mappings from [AKS].

I To ensure a high sampling granularity and force the points to
stay within their prescribed regions we sample enough points
to get 10, 000 of them inside the appropriate region while
rejecting those that are outside.

I The Constrained Radial Layer (CRL) used to fit the
de-asymptotized values has 300 nodes (Gaussian kernels) with
2, 700 parameters to train.
I For controlled dimensions, the centers and widths of the

Gaussian kernels are within the bounds
I For uncontrolled dimensions, the bounds for the centers and

widths do not have constrains
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I We compare our results with the standard NN method
without any asymptotics control:
I We use a NN with two hidden sigmoid3 activation layers, one

with 300 nodes and another with 4.
I The number of training parameters, 2708, is very close to the

CRL network.
I Once the approximation to the implied volatility function is

learned, we generate a validation sample that covers the larger
measurement region so that we can calculate various
statistics, measuring the deviation of the fit from the known
exact results in various regions.

3According to our experiments, the sigmoid activation functions are the
most efficient for our application.
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Testing: Errors

I Our tests show that controlling asymptotics significantly
improves the NN fit to the SABR implied volatilities.

I We output mean-squared errors – the NN against the exact
results

I We work in units of log-normal volatilities: ∼20% in the bulk
but could be as high as 800% at the edges.

I “Learning error” is the mean-squared error over all learning
points (that are all in the learning region).

I “Validation error” is the mean-squared error over all validation
points.

I Their learning, asymptotic, and measurement region errors are
mean-squared errors over validation points in the respective
regions.
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I “Model 1” is an a CRL NN where we control the vol, the
strike and the vol-of-vol dimensions.

I “Model 2” is a CRL NN where we control the vol and the
strike.

I “Model 3” refers to our baseline NN without asymptotics
control – a deep NN with two hidden layers

Absolute error Model 1 Model 2 Model 3
Learning error 0.026% 0.029% 0.029%
Validation error 0.75% 1.56% 15.16%
Learning region error 0.09% 0.08% 0.07%
Asymptotic region error 0.49% 1.25% 2.69%
Measurement region error 1.2% 2.3% 26.7%

Table: Summary results for SABR fitting.
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Testing: Observations

I All three models fit the inputs equally well when measured at
all the learning points (“Learning error” row) and over
validation points in the learning region (“Learning error” row).

I Model 1 and Model 2 outperform Model 3 significantly (in
some cases by an order of magnitude) outside the learning
region

I Model 1 outperforms Model 2 measurably outside of the
learning region as it has more dimensions under asymptotic
control.

For further insight, we visualize test results in the following figures.
As far as we work with four-dimensional functions, we fix two
arguments and plot the rest two. More plots can be found in
[AKS].
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Testing: Plots
Fix β and γ and plot errors as function of atm vol and strike

v

4
3

2
1

0
1

2
3

4

strik
e

4
3

2
1

0
1

2
3

4

0.000

0.001

0.002

0.003

0.004

Center error for fixed normalized beta, gamma

Figure: Volatility fitting error for NN with strike and volatility
asymptotics control for fixed β = 0.5 and γ =

√
3.
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Below we plot the approximation error for the NN with no
asymptotics control – the learning region is significantly worse
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Figure: Volatility fitting error for NN with no asymptotics control for
fixed β = 0.5 and γ =

√
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To show the effect of controlling asymptotics, we visualize the CRL
error with the control on the strike and vol but not the skew and
vol-of-vol.
Let us plot them for fixed volatility and skew

gamma
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Figure: Volatility fitting error for NN with strike and volatility
asymptotics control for fixed v = 0.2 and β = 0.5 .
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Let us see what happens to this error if we add vol-of-vol γ to the
controlled dimensions we control – the error for large γ values is
much smaller

gamma
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Figure: Volatility fitting error for NN with strike, volatility and
volatility-of-volatility asymptotics control for fixed v = 0.2 and β = 0.5 .
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Conclusions

I While (deep) NNs are good in fitting/interpolation, they are
not good in extrapolation

I This has profound consequences for their usefulness in math
finance
I Performance in regimes not seen before (happens all the time)
I Stress testing
I Explainability

I We propose a way to incorporate extra knowledge of the
asymptotics into an NN
I A special spline to “remove” the asymptotics
I A special layer of Gaussian kernel functions with restrictions to

approximate the reminder, a function with zero asymptotics at
the boundaries

I Our results confirm our theoretical conclusions
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